
1

Signature-based Virus Detection for Windows

Operating Systems Using Java and PostgreSQL
Eliyas Sala

I. INTRODUCTION

Did you know that Windows is the most used operating

system? In fact, 76.12% of computer consumers used

Windows operating system in 2021 [4]. Since it has existed

for such a long period of time compared to other operating

systems, hackers and cyber terrorists have found loopholes

to manipulate computer systems running this operating

system. They have created different malwares, like viruses,

that are often undetectable by antivirus softwares [2]. The

data above motivates individuals, like me, who seek business

opportunities by developing a software to secure this system.

Although different antivirus softwares exist, most of them

are ineffective or lack the consumers’ trust. As part of the

requirements for this project in my Operating Systems

course, this research briefly discusses how these programs

work and their tested performances. Then I propose my

software-based solution with different development tools.
.

II. RELATED WORK

Sukwong et al. examines the most used AV softwares and

the algorithmic implementation behind them. He/she first

provides the distinction between Signature-based detection

vs. Behavior-based detection [5]. Both are ways to detect

virus and every AV product doesn’t necessarily use the same

method to do that. In Signature-based detection, AV product

scans a file and assigns a unique identification to that file. For

example, it could use hashing algorithms like MD5 to assign

value. Then it evaluates based on patterns of that hashing by

comparing it to a remote database containing viral

characteristics. If a match exists, then that file is indeed virus

infected. Behavior-based detection, another common

implementation, analyzes the behaviors of that specific file

instead of accuracy matching. It is important to note that there

are many more other implementations that different AV

softwares use, but we will focus on these two.

Sukwong et al. continues to discuss and points out the

ineffectiveness of AV softwares. Based on an experiment

conducted to test the responsiveness of selected AV

softwares, their activities were monitored when intentionally

given infected files. The softwares in the experiment were the

following: Avast, Kaspersky, McAfee, Norton, Symantec,

and Trend Micro. Avast performed the best by detecting

62.15% of malware. However, it couldn’t fully detect all of

them. This clearly shows we shouldn’t completely rely on

our AV softwares to keep our windows computers secure.

Figure 1 shows comparisons of different AV softwares

As you can see above, 42.83 percent of the malware

remained undetected on first time. Among these undetected

virus-infected files, 53.83 percent produced one or more

malicious other files. Additionally, we found that 23.49 percent

of these undetected malware files with malicious child files had

one or more child files detected within zero days, but 64.36

percent weren’t detected. This data tells us that there are

limitations to these AV softwares.

III. IMPLEMENTATION

To solve the problem of enhancing virus detection capability

on Windows operating systems, it is important to analyze the

different types of viruses that exist and learn their behaviors.

Based on the statistics provided on the global market share of

desktop operating systems, Windows has consistently

dominated the market for years in staggering amounts. Other

well-known operating systems, like macOS, are far from

reaching this success. However, this much of consumer usage

has created vulnerability for Windows operating systems [4].

Unlike most antivirus software, my application performs

detection-only service and does not have a removal feature.

And it builds upon a signature-based detection system.

2

Figure 2 shows my software

Given a directory path to scan for viruses, my software will

first use a hashing algorithm to compute the MD5 hashing for

every file in that directory. Then it matches strings collections

of stored MD5 data in a PostgreSQL database containing large

data of the existing viruses and their MD5 classification

signatures [3]. After cross-referencing the MD5 generated

from scanning the files against our data of known viruses’

MD5, my application decides whether is it safe or virus

infected. If infected, a pop-up message should appear before

the users warning them.

IV. WORK

Overall goal

Deciding between Microsoft Visual Studio to develop a C/C#

based program and Java-based desktop application. Since I

have the most experience with Java, I chose to use Eclipse IDE

to write my code and develop my program.

Figure 3 shows java libraries and data structures I used

I decided which programming langauge to use based on

feasibility. I choose Java (my most proficient langauge) and I

designed the user interface using Swing API. I created event

listeners for the components as well. I imported Java’s security

class to use MessageDigest class to access it and generate MD5

hashing by scanning the files. The data structures I used include

File object to store files as arrays and an arraylist to store MD5

strings. I also used a Scanner object to scan the files and store

them as strings for manipulation.

Figure 4 shows the data source I used for identifying viruses

I used a real-world dataset from VirusShare.com. First, I

stored the MD5 data in text files and then, I used Heroku to

create a PostgreSQL database and added database driver to

eclipse. Then I wrote a class for a database connection

and data insertion. Every time my application runs, it

should either return “clean” or “virus detected”. After

selecting a directory, users click “scan” button to run the

start the process for detection. The backbone of my

application rests on the MD5 hashing function and

Checksum functions. I created a byte array to read data in

chunks. Note that “checksum” function as a parameter of

previous function’s data. I also incorporated exception

handling for better code quality.

3

V. CONCLUSION

This research-based project explores the different

virus detection systems for Windows operating

system. Then it discusses a signature-based

scanning system with its implementation.

Although my database only contains 10,000 rows

of data due to resource limitations, the application

is fully scalable. The UI needs improvements

however the functionality is intact. My work does

not claim superiority compared to the other AV

solutions; however, it provides a different

approach to tackle the problem. It will continue to

undergo refinement until my desired goals are

met and optimal solutions are achieved.

4

