Signature-based Virus Detection for Windows
Operating Systems Using Java and PostgreSQL

Eliyas Sala

I. INTRODUCTION

Did you know that Windows is the most used operating
system? In fact, 76.12% of computer consumers used
Windows operating system in 2021 [4]. Since it has existed
for such a long period of time compared to other operating
systems, hackers and cyber terrorists have found loopholes
to manipulate computer systems running this operating
system. They have created different malwares, like viruses,
that are often undetectable by antivirus softwares [2]. The
data above motivates individuals, like me, who seek business
opportunities by developing a software to secure this system.
Although different antivirus softwares exist, most of them
are ineffective or lack the consumers’ trust. As part of the
requirements for this project in my Operating Systems
course, this research briefly discusses how these programs
work and their tested performances. Then | propose my
software-based solution with different development tools.

Il. RELATED WORK

Sukwong et al. examines the most used AV softwares and
the algorithmic implementation behind them. He/she first
provides the distinction between Signature-based detection
vs. Behavior-based detection [5]. Both are ways to detect
virus and every AV product doesn’t necessarily use the same
method to do that. In Signature-based detection, AV product
scans a file and assigns a unique identification to that file. For
example, it could use hashing algorithms like MD5 to assign
value. Then it evaluates based on patterns of that hashing by
comparing it to a remote database containing viral
characteristics. If a match exists, then that file is indeed virus
infected. Behavior-based detection, another common
implementation, analyzes the behaviors of that specific file
instead of accuracy matching. It is important to note that there
are many more other implementations that different AV
softwares use, but we will focus on these two.

Sukwong et al. continues to discuss and points out the
ineffectiveness of AV softwares. Based on an experiment
conducted to test the responsiveness of selected AV
softwares, their activities were monitored when intentionally
given infected files. The softwares in the experiment were the

following: Avast, Kaspersky, McAfee, Norton, Symantec,
and Trend Micro. Avast performed the best by detecting
62.15% of malware. However, it couldn’t fully detect all of
them. This clearly shows we shouldn’t completely rely on
our AV softwares to keep our windows computers secure.

100
Undetectedmalware (within zero

90 days) with no child files
30 Undetectedmalware (within zero
days) with undetectedchild files

70 m Undetectedmalware (within zero
£ 6 days) with one or more detected
é child files more than 0 days
= 50 w Undetectedmalware (within zero
= days) with one or more detected
% 40 child files within 0 days
a.

30
20
10

Avast Kaspersky McAfee Norton Symantec Trend
Micro

Figure 1 shows comparisons of different AV softwares

As you can see above, 42.83 percent of the malware
remained undetected on first time. Among these undetected
virus-infected files, 53.83 percent produced one or more
malicious other files. Additionally, we found that 23.49 percent
of these undetected malware files with malicious child files had
one or more child files detected within zero days, but 64.36
percent weren’t detected. This data tells us that there are
limitations to these AV softwares.

I11. IMPLEMENTATION

To solve the problem of enhancing virus detection capability
on Windows operating systems, it is important to analyze the
different types of viruses that exist and learn their behaviors.
Based on the statistics provided on the global market share of
desktop operating systems, Windows has consistently
dominated the market for years in staggering amounts. Other
well-known operating systems, like macQOS, are far from
reaching this success. However, this much of consumer usage
has created vulnerability for Windows operating systems [4].
Unlike most antivirus software, my application performs
detection-only service and does not have a removal feature.
And it builds upon a signature-based detection system.

Virus Detector

Scan

Status

Figure 2 shows my software

Given a directory path to scan for viruses, my software will
first use a hashing algorithm to compute the MD5 hashing for
every file in that directory. Then it matches strings collections
of stored MD5 data in a PostgreSQL database containing large
data of the existing viruses and their MD5 classification
signatures [3]. After cross-referencing the MD5 generated
from scanning the files against our data of known viruses’
MD5, my application decides whether is it safe or virus
infected. If infected, a pop-up message should appear before
the users warning them.

V. WORK
Overall goal

Deciding between Microsoft Visual Studio to develop a C/C#
based program and Java-based desktop application. Since |
have the most experience with Java, | chose to use Eclipse IDE
to write my code and develop my program.

java.awt.EventQueue;

i

[]1 files_present;

< > Llist MD5Files = ArraylList<

< > file names = Arraylist<
directory_name;

] ares) {

.invokelater(Runnable() {
O
{
window = AntiVirusScanner();
window. frame.setVisible()s

directoryPath = File (

filesReader(directoryPath);

Figure 3 shows java libraries and data structures | used

2

I decided which programming langauge to use based on
feasibility. I choose Java (my most proficient langauge) and |
designed the user interface using Swing API. | created event
listeners for the components as well. | imported Java’s security
class to use MessageDigest class to access it and generate MD5
hashing by scanning the files. The data structures I used include
File object to store files as arrays and an arraylist to store MD5
strings. | also used a Scanner object to scan the files and store
them as strings for manipulation.

A https:.//virusshare.com/hashfile > —_
< & @& virusshare.com/hashfiles/VirusShare 00371.md5
Malware sample MDS list for
VirusShare 80371.zip
http://VirusShare.com #*
Twitter: @VXShare

S5ccd366e4f12Ff8b566967941cl13c@e?76
fcd540c588da351801f25e19865c25d8
f5e48aBcf7c9e8788531376854343797
626294119e28d390b418e8fcbdddes33
7c6fae946d1620b33248e3T3eadc5178
S f40db6e9649bSccB82cde28d3ef8d2c
@1fbf997f3d411cef2c52f57eef8easSe
94745565905127c@cfes5521616566aa7
95c557cad454aftecbb3ec8a86de@861d7
d5a98c7b7cb922d9d54a7274c5825bF3
c9411bcf94ad6fb36db22cddasf44c39
a7eaa3bB8abc®5aa31583493ad29dbeSe
94118861251be9c2d9@dd5a31dfas29b
c72ef33e22fddsa2c81eddbl4030300e
dBcc95519a58abB7fa2d25Ffeb36891d5
888e6b7cd91f@b206d7993b82187079d
f94463adbe210ef84e0045e2a21811da
77dlecedadf5ca®af2b8cd62adadbbss
Ec6@ScdfE19c272ddeld93778b8cB817T
31bl9e8@t220b67f3b2384aea681T967
95d6a@2c@cS5cc7a3tf493a62841e41705
eb767c1f8b46a4d3727c@ed49e78a3777
1356799ac3559842e3d54472c99%bdeed
dSeda4@a2ldB8calaSbfaee8fadaBbblec
2d5c8af933a36145F1l2aa28a@e9abcdl?
43a5bb28T6702d8a6@cfT53796d24219F
1f1697ab8lbcaacf2ca8abce3608a339
177e9e58ce51dbd7b681c3224208471d
2d67fa5d6e0000816ed968bdedl1185bc
ba®bdbe926acde29e953317186b68dcfa

Figure 4 shows the data source | used for identifying viruses
I used a real-world dataset from VirusShare.com. First, |
stored the MD5 data in text files and then, | used Heroku to
create a PostgreSQL database and added database driver to
eclipse. Then | wrote a class for a database connection
and data insertion. Every time my application runs, it
should either return “clean” or “virus detected”. After
selecting a directory, users click “scan” button to run the
start the process for detection. The backbone of my
application rests on the MD5 hashing function and
Checksum functions. | created a byte array to read data in
chunks. Note that “checksum” function as a parameter of
previous function’s data. I also incorporated exception
handling for better code quality.

V. CONCLUSION

This research-based project explores the different
virus detection systems for Windows operating
system. Then it discusses a signature-based
scanning system with its implementation.
Although my database only contains 10,000 rows
of data due to resource limitations, the application
is fully scalable. The Ul needs improvements
however the functionality is intact. My work does
not claim superiority compared to the other AV
solutions; however, it provides a different
approach to tackle the problem. It will continue to
undergo refinement until my desired goals are
met and optimal solutions are achieved.

REFERENCES

Al-Asli, Moharmmed et al. “Review of Signature-based Techniques in
Antivirus Products ™ (2019).

Garba, Faisal A et al. “Evaluating the State of the Art Antivirus Evasion
Tools on Windows and Android Platform.™ (2019).

Sahoo, Abhaya, et al “Signature based Malware Detection for
Unstructured Data in Hadoop.™ (2014).

“Desktop operating system market share worldwide,” StatCounter
Global Stats. [Online]. Available: https://gs.statcounter.com/os-market-
share/desktop/worldwide. [Accessed: 05-Sep-2021].

0. Sukwong and H. S. Kim, "Commercial Antivirus Software
Effectiveness: An Empirical Study.” IEEE Computer Society, pp. 63-70,
2011.

